
دانلود پروژه تحقیق در مورد کاربردهای ابررسانایی در صنعت برق word دارای 14 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد دانلود پروژه تحقیق در مورد کاربردهای ابررسانایی در صنعت برق word کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است
توجه : در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی دانلود پروژه تحقیق در مورد کاربردهای ابررسانایی در صنعت برق word ،به هیچ وجه بهم ریختگی وجود ندارد
بخشی از متن دانلود پروژه تحقیق در مورد کاربردهای ابررسانایی در صنعت برق word :
ابررساناها و ژنراتورهای هیدرودینامیک مغناطیسی
ژنراتورهای هیدرودینامیک مغناطیسی: اصول کلی ژنراتورهای هیدرودینامیک مغناطیسی (MHD) که از سال 1959 پژوهشهایی برای تولید برق به وسیله آنها شروع شده و هنوز ادامه دارد، بر این اساس است که جریان گاز پلاسما (بسیار داغ) یا فلز مذاب از میان میدان مغناطیسی قوی عبور داده میشود.
با عبور گاز داغ یا فلز مذاب، در اثر میدان مغناطیسی بسیار قوی موجود، یونهای مثبت و منفی به سمت الکترودهایی که در بالا و پایین جریان گاز پلاسما یا فاز مذاب قرار دارند، جذب میشوند و مانند یک ژنراتور جریان مستقیم، تولید الکتریسیته را باعث میشوند
. قدرت الکتریکی این ژنراتور جریان مستقیم با اینورترهای الکترونیک قدرت، به برق جریان متناوب تبدیل و به شبکه متصل میشود. با توجه به هزینه بالای تولید الکتریسیته در ژنراتورهای MHD، استفاده از آنها تنها به منظور یکنواختی منحنی مصرف در زمانهای پرباری شبکه مفید است. سیمپیچهای بزرگ ابررسانا که از مواد ابررسانای متعارف مانند آلیاژ نیوبیوم تیتانیوم ساخته شدهاند برای تولید میدانهای مغناطیسی بسیار قوی مناسب و قابل استفاده است.
اگر فاصله دو الکترود 1/0 متر، سرعت یونها 400 متر بر ثانیه و میدان مغناطیسی 5 تسلا باشد، ولتاژ خروجی 200 ولت خواهد بود و در طول کانال 6 متری و با قطر یک متر، 40 مگاوات انرژی قابل تولید است. مزیت اصلی ژنرتورهای MHD وزن نسبتاً کم آنها در مقایسه با ژنراتورهای متعارف است که استقبال از کاربرد آنها را در صنایع هوایی و دریایی موجب شده است.
کاربرد ابررسانا در محدودسازهای جریان خطا
علاوه بر موارد گفته شده، محدودسازهای ابررسانائی جریان خطا یا SFCL نیز رده تازهای از وسایل حفاظتی سیستم قدرت را ارائه میکنند که قادرند شبکه را از اضافه جریانهای خطرناکی که باعث قطعی پر هزینه برق و خسارت به قطعات حساس سیستم میشوند حفاظت نمایند. اتصال کوتاه یکی از خطاهای مهم در سیستم قدرت است
که در زمان وقوع، جریان خطا تا بیشتر از 10 برابر جریان نامی افزایش مییابد و با رشد و گسترش شبکههای برق، به قدرت اتصال کوتاه شبکه نیز افزوده میشود. تولید جریانهای خطای بزرگتر، ازدیاد گرمای حاصله ناشی از عبور جریان القائی زیاد در ژنراتورها، ترانسفورماتورها و سایر تجهیزات و همچنین کاهش قابلیت اطمینان شبکه را در پی دارد.
لذا عبور چنین جریانی از شبکه احتیاج به تجهیزاتی دارد که توانایی تحمل این جریان را داشته باشند و جهت قطع این جریان نیازمند کلیدهایی با قدرت قطع بالا هستیم که هزینههای سنگینی به سیستم تحمیل میکند. اما اگر به روشی بتوان پس از آشکارسازی خطا، جریان را محدود نمود، از نظر فنی و اقتصادی صرفهجویی قابل توجهی صورت میگیرد.
انواع مختلفی از محدود کنندههای خطا تا به حال برای شبکههای توزیع و انتقال معرفی شدهاند که سادهترین آنها فیوزهای معمولی است که البته پس از هر بار وقوع اتصال کوتاه باید تعویض شوند. از آنجاییکه جریان اتصال کوتاه در لحظات اولیه به خصوص در پریود اول موج جریان، دارای بیشترین دامنه است و بیشترین اثرات مخرب از همین سیکلهای اولیه ناشی میشود باید محدودسازهای جریان خطا بلافاصله بعد از وقوع خطا در مدار قرار گیرند.
محدودکنندههای جریان اتصال کوتاه طراحی شده در دهههای اخیر، عناصری سری با تجهیزات شبکه هستند و وظیفه دارند جریان اتصال کوتاه مدار را قبل از رسیدن به مقدار حداکثر خود محدود نمایند به طوری که توسط کلیدهای قدرت موجود قابل قطع باشند.
این تجهیزات در حالت عادی، مقاومت کمی در برابر عبور جریان از خود نشان میدهند ولی پس از وقوع اتصال کوتاه و در لحظات اولیه شروع جریان، مقاومت آنها یکباره بزرگ شده و از بالا رفتن جریان اتصال کوتاه جلوگیری میکنند.
این تجهیزات پس از هر بار عملکرد باید قابل بازیابی بوده و در حالت ماندگار سیستم، باعث ایجاد اضافه ولتاژ و یا تزریق هارمونیک به سیستم نگردند. محدودسازهای اولیه با استفاده از کلیدهای مکانیکی امپدانسی را در زمان خطا در مسیر جریان قرار میدادند. با ورود ادوات الکترونیک قدرت کلیدهای تریستوری برای این موضوع مورد استفاده قرار گرفتند و مدارهای متعددی از جمله مدارهای امپدانس تشدید و ابررسانا، ارائه گردیده است.
محدودکنندههای ابررسانا در شرایط بهرهبرداری عادی سیستم یک سیمپیچ با خاصیت ابررسانایی بوده (مقاومت و افت ولتاژ کمی را باعث میشود) ولی به محض وقوع اتصال کوتاه و افزایش جریان از یک حد معینی (جریان بحرانی) سیمپیچ مربوط مقاومت بالایی از خود نشان میدهد و به همین دلیل جریان خطا کاهش مییابد.
عمل فوق در زمان کوتاهی انجام میپذیرد و نیاز به سیستم کشف خطا نمیباشد. برآورد اولیه بخش ابر رسانائی EPRI نشان میدهد که استفاده از محدودسازهای ابررسانائی جریان یک بازار فروش با درآمد حدود 3 تا 7 میلیارد دلار در 15 سال آینده به وجود خواهد آورد.
کاربرد ابررسانا در ذخیره سازهای مغناطیسی
در سیستم قدرت بین قدرتهای الکتریکی تولیدی و مصرفی تعادل لحظهای برقرار است و هیچگونه ذخیره انرژی در آن صورت نمیگیرد. بنابراین تولید شبکه ناچار به تبعیت از منحنی مصرف است که غیر اقتصادی میباشد.
ابرسانای ذخیره کننده انرژی مغناطیسی (SMES) وسیلهای است که برای ذخیره کردن انرژی، بهبود پایداری سیستم قدرت و کم کردن نوسانات قابل استفاده میباشد. این انرژی توسط میدان مغناطیسی که توسط جریان مستقیم ایجاد میشود ذخیره میشود.
ابرسانای ذخیره کننده انرژی مغناطیسی هزاران بار قابلیت شارژ و دشارژ دارد بدون اینکه تغییری در خواص مغناطیس آن ایجاد شود. ویژگی ابر رسانایی سیم پیچ نیز موجب میشود که راندمان رفت و برگشت فرایند ذخیره انرژی بسیار بالا و در حدود 95% باشد
. اولین نظریهها در مورد این سیستم در سال 1969 توسط فریه مطرح شد. وی طرح ساخت سیمپیچ مارپیچی بزرگی را که توانایی ذخیره انرژی روزانه برای تمامی فرانسه را داشت ارائه کرد که به خاطر هزینه ساخت بسیار زیاد آن پیگیری نشد. در سال 1971 تحقیقات در آمریکا در دانشگاه ویسکانسین برای فهمیدن بحثهای بنیادی اثر متقابل بین انرژی ذخیره شده و سیستمهای چند فاز به ساخت اولین دستگاه انجامید
شرکت هیتاچی در سال 1986 یک دستگاه SMES به ظرفیت 5 مگاژول را آزمایش کرد. در سال 1998 نیز ذخیرهساز 360 مگاژول توسط شرکت ایستک در ژاپن ساخته شد. علاوه بر ذخیرهسازی انرژی به منظور تراز منحنی مصرف و افزایش ضریب بار، سیستمهای مورد اشاره با اهداف دیگری نیز مورد توجه قرار گرفتهاند. بروز اغتشاشهای مختلف در شبکه قدرت از جمله تغییرات ناگهانی بار، قطع و وصل خطوط انتقال و ; به عدم تعادل سیستم میانجامد.
در این شرایط انرژی جنبشی محور ژنراتورهای سنکرون مجبور به تأمین افزایش انرژی ناشی از اختلال هستند و درصورت حفظ پایداری دینامیکی، حلقههای کنترل سیستم فعال شده و تعادل را برقرار میسازند. این روند، نوسان متغیرهای مختلف مانند فرکانس، توان الکتریکی روی خطوط و; را موجب میشود که مشکلات مختلفی را در بهره برداری از سیستم قدرت به دنبال دارد.
اما اگر در سیستم مقداری انرژی ذخیره شده باشد، با مبادله سریع آن با شبکه در مواقع مورد نیاز میتوان مشکلات فوق را کاهش داد. با توجه به اینکه در این سیستم انرژی از صورت الکتریکی به صورت مغناطیسی و یا بر عکس تبدیل میشود، ذخیرهساز ابررسانایی دارای پاسخ دینامیکی سریع میباشد و بنابراین میتواند در جهت بهبود عملکرد دینامیکی نیز به کار رود.
معمولاً واحدهای ابررسانایی ذخیره انرژی را در دو مقیاس ظرفیت بالا یعنی حدود 1800 مگاژول برای تراز منحنی مصرف، و ظرفیت پایین (چندین مگا ژول) به منظور افزایش میرایی نوسانات و بهبود پایداری سیستم میسازند. سیم پیچ ابررسانا از طریق مبدل به سیستم قدرت متصل و شارژ میشود و با کنترل زاویه آتش تریسیتورها ولتاژ DC دو سر سیم پیچ ابررسانا به طور پیوسته در بازه وسیعی از مقادیر ولتاژهای مثبت ومنفی قابل کنترل است. ورودی ذخیرهساز انرژی میتواند تغییرات ولتاژ شبکه، تغییر فرکانس شبکه، تغییر سرعت ماشین سنکرون و; باشد
و خروجی نیز توان دریافتی خواهد بود. مهم ترین قابلیت SMESجداسازی و استقلال تولید از مصرف است که این امر مزایای متعددی از قبیل بهره برداری اقتصادی، بهبود عملکرد دینامیکی و کاهش آلودگی را به دنبال دارد. در کابرد AC جریان الکتریکی هنوز تلفات دارد اما این تلفات میتواند با طراحی مناسب کاهش پیدا کند. برای هر دوحالت کاری AC وDC انرژی زیادی قابل ذخیرهسازی است. بهترین دمای عملکرد برای دستگاههای مورد اشاره نیز 50 تا 77 درجه کلوین است.
کاربرد ابررسانا در موتورها و ژنراتورها
درصورت استفاده از سیمهای ابررسانا به جای سیمهای مسی در روتور ماشینهای القایی، تلفات، حجم، وزن و قیمت آنها کاهش قابل ملاحظهای خواهد داشت و با افزایش بازده، صرفهجویی قابل توجهی در انرژی الکتریکی صورت میگیرد. کویل ژنراتورهای سنکرون نیز با مواد ابررسانای سرامیکی قابل ساخت میباشد که منجر به افزایش قابل توجهی در بازده ژنراتور خواهد شد. به علاوه تکنولوژی ابررسانا امروزه در ساخت کندانسورهای سنکرون نیز کاربرد دارد. کندانسورهای ابررسانا دارای بازده بیشتر، هزینه نگهداری کمتر و قابلیت انعطاف بهتری هستند.
کاربرد ابررسانا در ترانسفورماتورها
استفاده از مواد ابررسانا در سیمبندی ترانسفورماتورها باعث 50% کاهش در تلفات، وزن و ابعاد ترانسفورماتور نسبت به انواع متداول ترانسفورماتورهای روغنی شده و به علاوه تأثیر قابل توجهی نیز در افزایش بازده، کاهش افت ولتاژ و افزایش ظرفیت اضافه بار ترانسفورماتور دارد. استفاده از ترانسفورماتورهای ابررسانا با توجه به حجم کم و عدم استفاده از روغن برای خنکسازی، نقش قابل ملاحظهای در بهبود فضای شهری و کاهش هزینههای زیست محیطی خواهد داشت.
کاربرد ابررسانا در سیم و کابل
کشف متحول کننده ابررساناهای دما بالا در سال 1986 منجر به تحول و تولید نوع جدیدی از کابلها در سیستمهای قدرت شد. در ایالات متحده، اروپا و ژاپن رقابت سختی بر روی تجارت تولید آینده کابلهای ابررسانائی وجود دارد. قابلیت هدایت جریان برق در کابلهای HTS بالغ بر 100 بار بیشتر از هادیهای آلومینیومی و مسی متداول میباشد. اندازه، وزن و مقاومت این نوع کابلها از کابلهای معمولی بهتر بوده و امروزه تولیدکنندگان تجهیزات الکتریکی در سراسر دنیا سعی دارند با استفاده از تکنولوژی HTS باعث کاهش هزینهها و افزایش ظرفیت و قابلیت اطمینان سیستمهای قدرت شوند.
تاریخچه ساخت ابررساناها بخش چهارم
بعد از کشف ابررساناها، تا چند سال تصور میشد رفتار مغناطیسی ابررسانا مانند رساناهای کامل است. اما در سال 1933 مایسنر و اوشنفلد دریافتند اگر ماده مورد آزمایش قبل از ابررسانا شدن در میدان مغناطیسی باشد، شار از آن عبور میکند ولی وقتی در حضور میدان به دمای بحرانی برسد و ابررسانا گردد دیگر هیچگونه شار مغناطیسی از آن عبور نخواهد کرد و تبدیل به یک دیامغناطیس کامل میشود که شدت میدان (B) درون آن صفر خواهد بود.
آنها توزیع شار در خارج نمونههای قلع و سرب را که در میدان مغناطیسی تا زیر دمای گذار سرد شده بودند را اندازه¬گیری و مشاهده کردند که ابررسانا دیامغناطیس کامل گردید و تمام شار به بیرون رانده شد. این آزمایش نشان داد که ماده ابررسانا چیزی بیشتر از ماده رسانای کامل است. براساس ویژگی مهم ابررساناها، فلزات در حالت ابررسانایی هرگز اجازه نمیدهند که چگالی شار مغناطیسی در درون آنها وجود داشته باشد. به عبارت دیگر در داخل ابررسانا همیشه B=0 است. این پدیده به اثر مایسنر معروف شد.
در اثر پدیده مایسنر اگر یک آهنربا روی ماده ابررسانا قرار گیرد، روی آن شناور میماند. در شکل یک آهنربای استوانهای روی یک قطعه ابررسانا که توسط نیتروژن خنک شده شناور است. علت شناور ماندن، اثر مایسنر است که براساس آن خطوط میدان مغناطیسی امکان عبور از ابررسانا را نیافته و چنانکه مشاهده میشود، ابررسانا قرص مغناطیسی را شناور نگه میدارد.
پس از کشف دیامغناطیس بودن ابررساناها، در سال 1950 آلیاژهای ابررسانایی مانند سرب+بیسموت و سرب+تیتانیوم کشف شدند که میدانهای بحرانی خیلی بالایی از خود نشان میدادند. پژوهشهای بعدی نشان داد که این مواد نوع متفاوتی از ابررساناها هستند که بعداً نوع II نامیده شدند
. لاندن با استفاده از موازنه انرژی در محدوده کوچکی بین مرز فازهای ابررسانا و نرمال، شرط تعادل فاز را به دست آورده و به حضور یک سطح انرژی دیگر با منشأ غیرمغناطیسی اشاره کرد که علاوه بر انرژی مرز بین دو فاز ابررسانا و نرمال وجود داشت. وی متذکر شد که اگر سطح انرژی کل مثبت باشد ابررسانایی ازنوع اول و اگر منفی باشد از نوع دوم است که در این صورت میدان مغناطیسی به درون ابررسانا نفوذ میکند. در سال 2003 نیز آلکسی آبریکوزوف و ویتالی گینزبورگ به خاطر بسط تئوری ابررسانایی همراه با آنتونی لگت برنده جایزه نوبل فیزیک شدند.
به تازگی هم پژوهشگران فرانسوی خاصیت جدیدی را در ابررساناها پیدا کردهاند که قبلاً در هیچ نظریهای پیشبینی نشده بود. چنانکه اشاره شد خواص ابررسانایی در مواد، به دمای محیط، میدان مغناطیسی و شدت جریان عبوری بستگی دارد. محققان فرانسوی بلوری ساخته بودند که در دمای 04/0 درجه کلوین ابررسانا میشد و وقتی شدت میدان مغناطیسی به بیشتر از 2 تسلا میرسید،
این خاصیت از بین میرفت. یکی از پژوهشگران این گروه، از روی کنجکاوی، شدت میدان مغناطیسی را باز هم بیشتر کرد. وقتی شدت میدان به 12 تسلا رسید، بلور دوباره ابررسانا شد. وقتی میدان باز هم بالاتر رفت، این خاصیت دوباره از بین رفت. این گزارش که اخیراً در نشریه علمی ساینس به چاپ رسیده، توجه بسیاری از فیزیکدانان حالت جامد را برانگیخته است چرا که هیچ توضیح خاصی برای این پدیده وجود ندارد.
با توجه به موارد گفته شده، به نظر میرسد که میدان مغناطیسی متغیر باعث ایجاد رفتارهای جالب پیشبینی نشده در ابررساناها میشود. البته باید توجه داشت که ابررسانایی یک خاصیت کاملاً کوانتمی است و به سادگی نمیتوان وضعیت پیش آمده در این آزمایش را توصیف کرد.
عناصر ابررسانا در جدول مندلیوف
تاریخچه ساخت ابررساناها بخش سوم
حدود 70 سال پیشرفتهای انجام شده برای افزایش دمای بحرانی به کندی انجام گرفت. از سال 1911 تا سال 1973 یعنی حدود 62 سال دانشمندان تنها توانستند دمای بحرانی را از 4 درجه به 3/23 درجه کلوین که کمی بیشتر 3/20 کلوین یعنی دمای ئیدروژن مایع است برسانند اما کار با ئیدروژن مایع نیز پرهزینه، مشکلآفرین و خطرساز بود و کاربردهای ابررسانا را محدود میساخت. در سالهای بعد علاوه بر فلزات و آلیاژهای فلزی، فعالیتهایی در زمینه ترکیبات نیمهفلزی توسط برخی دانشمندان آغاز شد اما هنوز مادهای دیگری به جز فلزات و آلیاژها یافته نشده بود که بتواند در دماهای مورد انتظار ابررسانا باشد.
سرانجام در 27 ژانویه سال 1986 جرج بدنورز و آلکس مولر در مؤسسه تحقیقاتی IBM شهر زوریخ سوئیس موفق به کشف پدیده ابررسانایی در سرامیکی از نوع اکسید مس و شامل لانتانوم و باریوم شدند. دمای بحرانی نمونه ساخته شده، حدود 35 درجه کلوین بود و آنها نیز به خاطر کشف ابررساناهای دمابالا (HTS) موفق به دریافت جایزه نوبل در سال 1987 شدند.
طی مدت زمان کوتاهی پس از کشف ابررسانایی دما بالا، دسترسی به دماهای بحرانی بالاتر به سرعت توسعه یافت. یک ماه بعد از کشف بدنورز و مولر، تاناکا و همکاران وی در توکیو نتایج آنها را تأیید نمودند و نتایج فعالیت آنها در یکی از نشریات ژاپنی به چاپ رسید. اندکی بعد از کشف اکسید مس حاوی باریوم و لانتانوم، در نتیجه همکاری پاول چو از دانشگاه هوستون و مانگ کنگ وو از دانشگاه آلاباما، عضو جدیدی از خانواده مواد ابررساناهای دما بالا با جایگزینی ایتریوم Y به جای لانتانوم کشف شد
. این ماده سرامیکی که دمای بحرانی آن به 92 درجه کلوین میرسید، به YBCO معروف شد. با توجه به نقطه جوش نیتروژن که 77 درجه کلوین در فشار یک اتمسفر است، برای سرد شدن این ابررسانا تا دمای بحرانی استفاده از نیتروژن مایع هم امکانپذیر بود که بسیار ارزانتر و بیخطرتر از ئیدروژن و هلیم مایع بود.
بنابراین فقط در طی یک سال از کشف اصلی، دمای انتقال به حالت ابررسانایی افزایش سه برابر داشت و واضح بود که انقلاب ابررساناها شروع شده است. برای پاسداشت تحول مهمی که در علم فیزیک واقع شده بود، توسط انجمن فیزیکدانان آمریکایی در بعدازظهر یکی از روزهای مارس 1987 جشنی هم در نیویورک برگزار شد. این جشن 3000 شرکت کننده داشت و حدود 3000 نفر نیز این جشن را از طریق تلویزیون مدار بسته در خارج از محل اصلی تماشا کردند.
در طول شش سال بعد، چند خانواده دیگر از ابررساناها کشف شدند که شامل ترکیبات شامل تولیوم (Tl) و جیوه (Hg) بوده و دارای حداکثر دمای بحرانی بیشتر از 120 درجه کلوین بودند. بالاترین مقدار تأیید شده دمای بحرانی در فشار معمولی یک اتمسفر، 135 درجه کلوین و متعلق به HgBa2Ca2Cu3O8 میباشد. به صورت تجربی معلوم شده است اگر ماده ابررسانا به صورت مکانیکی تحت فشار قرار گیرد، دمای بحرانی ابررسانا کمی تغییر میکند.
در سال 1993، دمای بحرانی 165 درجه کلوین (108- درجه سانتیگراد) نیز در ترکیبی از اکسید مس و جیوه و البته تحت فشارهای خیلی بالا گزارش شد. همگی ابررساناهای مورد اشاره یک ویژگی مشترک داشتند. وجود سطوح تراز شامل اتمهای اکسیژن و مس که با مواد حامل بار برای سطوح تراز از یکدیگر جدا میشوند. با توجه به کاربردهای مختلف ابررساناها، بسیاری از تلاشها بر افزایش دمای عملکرد ابررساناها تا دستیابی به دمای اتاق متمرکز شده است.
هر چند دمای بحرانی ترکیبات جدید سرامیکی در حد قابل توجهی از دمای بحرانی مواد ابررسانای متعارف (فلزات و آلیاژها) بزرگتر است، به دلیل خصوصیات فیزیکی این مواد مانند شکنندگی و پایین بودن چگالی و جریان بحرانی کاربردهای این مواد هنوز در مرحلهی تحقیق است. اخیراً سعید سلطانیان به همراه یک گروه علمی به سرپرستی پروفسور شی زو دو در دانشگاه ولونگونگ استرالیا ابررسانایی ساختهاند که بالاترین رکورد را از نظر خواص مکانیکی در میان ابررسانا دارد. این ابررسانا به شکل سیم یا نواری از جنس دی برید منیزیم (MgB2) با پوششی از آهن است و امکان انعطاف برای ساخت تجهیزات مختلف الکتریکی را داراست.
ابررساناهای جدید عموماً سرامیکی و اکسیدهای فلزی ورقه ورقه هستند که در دمای اتاق مواد نسبتاً بیارزشی محسوب میشوند و البته کاربردهای متفاوتی نیز دارند. اکسیدهای فلزی ابررسانا در مقایسه با فلزات شامل کمی حامل بار معمولی هستند و داری خواص انیسوتوروپیک الکتریکی و مغناطیسی میباشند. این خواص به نحو قابل ملاحظهای حساس به محتوای اکسیژن میباشند. نمونههای ابررسانای موادی مانند YBa2Cu3O7 را یک دانشآموز دبیرستانی نیز میتواند در یک اجاق میکروویو تولید کند اما برای تشخیص خواص فیزیکی ذاتی، کریستالهای یکتایی با درجه خلوص بالا مورد نیاز است که فرآیند ساخت پیچیدهای دارند.
تاریخچه ساخت ابررساناها بخش دوم
از کشف ابررسانایی در سال 1911 تاکنون، هیچ نظریه فیزیکی جامعی نتوانسته است به بیان دقیق علت خاصیت ابررسانایی بپردازد. در سال 1957 سه فیزیکدان آمریکایی به نامهای باردین، کوپر و شریفر در دانشگاه ایلینویز نظریهای برای توجیه پدیده ابررسانایی در ابررساناهای متعارف ارائه دادند که با نام آنها به نظریه BCS معروف گردید
. براساس این نظریه در ابررساناهای معمولی، الکترونهایی که در رسانایی جریان نقش دارند، جفتهایی تشکیل میدهند و متقابلاً با عواملی که باعث مقاومت الکتریکی میشوند، مقابله میکنند. ابداع تئوری BCS نیز برای سه دانشمند آمریکایی جایزه توبل 1972 را به ارمغان آورد. اینکه 46 سال طول کشید تا توجیهی برای پدیده ابررسانایی یافت شود، دلایلی داشت. دلیل اول اینکه جامعه فیزیک تا حدود بیست سال مبانی علمی لازم برای ارائه راه حل مسئله را که تئوری کوانتوم فلزات معمولی بود نداشت.
دوم اینکه تا سال 1934 هیچ آزمایش اساسی در این زمینه انجام نشد. سوم اینکه وقتی مبانی علمی لازم بدست آمد، به زودی مشخص شد انرژی مشخصه وابسته به تشکیل ابررسانایی بسیار کوچک یعنی حدود یک ملیونیم انرژی الکتریکی مشخصه حالت عادی است. بنابراین نظریه پردازان توجهشان را به توسعه یک تفسیر رویدادی از جریان ابررسانایی جلب کردند. این مسیر توسط فریتز لاندن رهبری میشد.
وی در سال 1953 به نکته زیر اشاره کرد: “ابررسانایی پدیدهای کوانتومی در مقیاس ماکروسکوپی است و با جداسازی حالت حداقل انرژی از حالات تحریک شده بوسیله وقفه های زمانی رخ میدهد.” به علاوه وی بیان داشت که دیامغناطیس شدن ابررساناها یک مشخصه بنیادی است. تئوری BCS در توضیح و تفسیر رویدادهای ابررسانایی موجود و هم چنین در پیشگویی رویدادهای جدید نسبتاً موفق بود.
در ژوئیه 1959، در اولین کنفرانس بزرگی که بعد از ارائه ی نظریه ی BCS با موضوع با ابررسانایی در دانشگاه کمبریج برگزار شد، دیوید شوئنبرگ کنفرانس را با این جمله آغاز کرد: «حالا باید ببینیم تا چه حد مشاهدات با حقایق نظری جور در میآیند ;؟»
